Senin, 06 Juli 2009

Tugas 7

Deteksi Warna Kulit

Satu fungsi image adalah satu penyajian matematis dari satu image, antara lain: f ( x) = f ( x,y ) intensitas cahaya atau daya pada posisi x. Satu dapat tulis: f ( x) = i( x). r ( x) dengan i (x ) iluminasi dan r (x ) pemantulan. Keduanya adalah terbatas: MEMASUKI<= i( x) <= dan memasuki<= r ( x) <= 1, sesuai dengan total pemantulan batas serapan dan penjumlahan. Pentingnya r (x ) dalam hal ini, tapi dengan cahaya struktur dan bentuk dari menaungi i(x ) permainan satu peran penting. Dengan tampilan hitam dan putih , f ( x) adalah satu nilai skalar; di image spektral multi f (x ) adalah satu nilai vektor. Image yang punya f 3 dimensi: f ( x) = { fred (x ), fgreen (x ), fblue (x )}. Pencitraan image diambil dari satelit atau pesawat udara, menghasilkan satu image yang mana dapat bisa berada pada dimensi 30 sampai dimensi 256 . Untuk 3 - D menggambar satu x= penggunaan {x,y,x }, dan untuk satu gugus berkala image: f ( x,t ). Satu model pendigitan dideskripsikan pada koordinat digtal ruang dan waktu, memanggil sampling, dan nilai intensitas tersebut, disebut dengan kuantisasi. Kamera CCD dan scanner sering mempergunakan persegi untuk melakukan sampling; pancaran pemasukan kemudian adalah terintegrasi berlalu area atau bagian dari ini. Untuk menggambar image yang mana harus diperlihatkan pada televisi, segiempat memiliki sisi dengan rasio 4:3 ( rasio aspek) atau 16:9 untuk layar lebar paling baru standar TV. Format lain digunakan juga pada kamera CCD percobaan seperti titik bersudut enam. Ini mempunyai keuntungan pada satu titik yang punya memiliki jenis sesuatu dari titik berdekatan. Ketika memilih satu sistem kamera lensa zoom, pastikan bahwa resolusinya cukup tinggi jadi saat itu resolusi paling kecil punya satu luas permukan dari paling tidak pada suatu titik tertentu. Banyaknya pixel yang diperlukan tergantung pada kebutuhan yang diukur dan dengan akurasi yang dihitung. Lebih tinggi daya pisah, makin banyak tempat yang diperlukan untuk penyimpanan ini. Waktu kalkulasi untuk algoritma juga bertambah, misal seperti n.ln (n ), n2 atau n3, n menjadi beberapa titik. Itulah sebabnya mengapa daya pisah piramida dipergunakan: antara lain dari satu 512*512 memperoleh image, kita hitung pertama 256*256, 128*128, 64*64, dsb. image. Menemukan objek dapat terjadi pada 64*64 gambar. Menentukan permukaan dari satu objek kemudian lebih tepat pada 512*512 gambar. Tentu, waktu yang ada harus dibebani siap sedia dibutuhkan ke bangun piramida seperti halnya ingatan ekstra memerlukan simpan image. Bagaimanapun, sejumlah titik pada image ekstra tidak akan pernah lebih dari sejumlah titik pada image asli (melihat bab 7.1.1). Sejumlah bytes memerlukan untuk menyimpan data intermediate, seperti itu tepi dari objek, dapat kurang














Pengenalan Angka dan Huruf

















Aplikasi pengenalan angka dan huruf menggunakan Jaringan Syaraf Buatan (JSB)


Secara umum dan sederhana, citra dapatdidefinisikan sebagai representasi visual dari suatu objek. Lebih jauh citra juga dapat diartikan sebagai gambaran yang representatif mengenai suatu objek sedemikian sehingga citra tersebut dapat memberikan kesan yang mendalam mengenai objek yang dimaksud. Jika ingin mendefinisikannya lebih bebas lagi, citra dapat didefinisikan sebagai bentuk visual yang dapat diterima secara baik oleh indera penglihatan, apapun bentuknya. Dalam bidang komputer, citra atau disebut juga image merupakan representasi visual dari suatu objek setelah mengalami berbagai transformasi data dari berbagai bentuk rangkaian numerik.

Untuk mendapatkan data yang akurat dan konsisten dari setiap sampel, digunakan suatu metode sederhana yaitu dengan cara menghitung jumlah pixel aktif yang terdapat pada bagian-bagian dari sampel. Adapun algoritma umum dari pengekstrakan data numerik dari setiap sampel adalah sebagai berikut :
1. Setiap sampel yang diamati, dibagi menjadi beberapa area, misalnya 4 kolom dan 5 baris,sehingga akan terdapat 20 area pengamatan; 2. jumlah pixel yang aktif dari setiap area yang ada dihitung secara akurat;
3. dihasilkan sejumlah 20 data numerik dengan atribut kolom dan baris yang diharapkan dapat mewakili data ciri dari sampel yang diamati. Setelah melalui tahapan normalisasi, data-data numerik tadi akan menjadi data input pada JSB. Dengan demikian jumlah area yang ada pada setiap sampel akan bersesuaian dengan jumlah neuron input JSB yang akan digunakan. Agar dapat dihasilkan kumpulan data yang seragam, maka setiap sampel yang akan diamati haruslah memiliki jumlah area pembagian
yang sama.


Image Retrieval

Ada dua cara yang dapat dilakukan dalam pengambilan kembali suatu image atau image retrieval
a. context-based adalah pengambilan data dengan merujuk pada kandungan semantik berkaitan dengan image, biasanya berhubungan dengan deskripsi image misalnya keyword dari image.
b. content-based adalah pengambilan data dengan merujuk pada fitur image seperti warna, tekstur, bentuk, atau kombinasi atau yang biasa desebut dengan Content Based Image Retrieval (CBIR).
Pada perkembangannya teknik context based menjadi tidak praktis dikarenakan adanya ukuran basis data yang besar dan penilaian subjektif dalam mengartikan image dengan text. Untuk menghindari teknik ini, maka digunakan pendekatan lain dalam image retrieval yaitu content based.CBIR adalah salah satu metodologi untuk pemanggilan kembali data image berdasarkan content sebuah image. Teknik CBIR yang banyak digunakan adalah teknik warna, teknik tekstur, dan teknik bentuk. Pada sistem CBIR, content visual dari image akan diekstraksi dan diuraikan menggunakan metode pengekstrakan ciri. Untuk mendapatkan kembali image, user menginputkan query image. Kemudian sistem akan mengekstrak image tersebut sehingga menghasilkan fitur ciri image. Fitur ciri image query dan image dalam database akan dicari similaritynya. Image yang memiliki nilai similarity yang paling tinggi akan muncul diurutan teratas. Gambar dibawah ini memperlihatkan bentuk umum sistem CBIR. Pada image tersebut terdapat dua jalur utama yaitu query dan database. Pada kedua lajur tersebut terdapat visual content description yang akan digunakan untuk proses similarity comparison, indexing dan retrieval.

Tidak ada komentar:

Posting Komentar